Home Beamlines || Beamline Projekte
Beamlines
PDF Drucken
Galerien

IR Beamline B22

IR Beamline B22

Assembly of mirror M1

IR Beamline B22

Assembly of mirror M1

IR Beamline B22

1st part of B22 during backout process.

IR Beamline B22

Assembly of Chamber B2.

IR Beamline B22

Assembly of mirror M2.

IR Beamline B22

Layout

Infrared Beamline for ASP

Infrared Beamline for ASP


complete Beamline

Infrared Beamline for ASP


3D Drawing

Infrared Beamline for ASP


Pressrelease from ASP

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Parts of the Beamline Chambers after the FAT
at FMB.

Infrared Beamline for ASP


Granite block in place at ASP.

Infrared Beamline for ASP


Installation of mirrorchamber M1
at ASP side.

Infrared Beamline for ASP


Installation of mirrorchamber M1
at ASP side.

Infrared Beamline for ASP


Installation of mirrorchamber M1
at ASP side.

Infrared Beamline for ASP


Installation of mirrorchamber M1
at ASP side.
Vibration tests with water flow.

Infrared Beamline for ASP


Installation of mirrorchamber M2
at ASP side.
Installation of the mirror at the mirrorholder.

Infrared Beamline for ASP


Installation of mirrorchamber M2
at ASP side.
Installation of the mirror at the mirrorholder.

Infrared Beamline for ASP


Installation of mirrorchamber M2
at ASP side.

Infrared Beamline for ASP


Installation of the IR Beamline (HV Part)
at ASP side.

Infrared Beamline for ASP


Installation of the IR Beamline (HV Part)
at ASP side.

Infrared Beamline for ASP


Installation of the IR Beamline (HV Part)
at ASP side.

Infrared Beamline for ASP


The first light.

Infrared Beamline for ASP


The first light.

Infrared Beamline for ASP


The first light.

Infrared Beamline for ASP


Lighttests.

ISMI Beamline

ISMI Beamline

Diamandfenster mit Kardanhalterung

ISMI Beamline

Diamandfenster mit Kardanhalterung
(Kipp– und Drehhalterung) und M5 Kammer

ISMI Beamline

Spiegelkammer 6 and 7 während der Montage

ISMI Beamline

Spiegelkammer 6 and 7 während der Montage

ISMI Beamline

Spiegel während der Montage

ISMI Beamline

Spiegel während der Montage

ISMI Beamline

ISMI Beamline während der Installation bei der SSLS

U55–Beamline

U55 Beamline


frontend during bakeout on Delta (Dortmund)

U55 Beamline


beamline during bakeout on Delta (Dortmund)

U55 Beamline


chamber group 2

U55 Beamline


chamber group 4

U55 Beamline


chamber group 5

U55 Beamline


mirror chamber for the beamline

U55 Beamline


frontend installed on DELTA (Dortmund)

U55 Beamline


frontend installed on DELTA (Dortmund)
with opened mirror chamber.

U55 Beamline


frontend mirror chamber
with mirror holder and
without mirror

U55 Beamline


frontend installed on DELTA (Dortmund)
with opened mirror chamber.

U55 Beamline


installation of the mirror in the mirror holder
for the frontend mirror chamber

U55 Beamline


installation of the mirror in the mirror holder
for the frontend mirror chamber

U55 Beamline


mirror chamber for the beamline

U55 Beamline


opened mirror chamber for the beamline

U55 Beamline


installation of the mirror in the mirror holder
for the beamline mirror chamber

SUL Beamline

SUL Baugruppe 1

SUL Baugruppe 3.

SUL Assembly 3.

SUL Baugruppe 2

SUL Baugruppe 3.

SUL Assembly 3.

SUL Baugruppe 3

SUL Baugruppe 3.

SUL Assembly 3.

SUL Baugruppe12

SUL Baugruppe 12.

SUL Assembly 12.

SUL Baugruppe14

SUL Baugruppe 14.

SUL Assembly 14.

SUL Baugruppe14 - Manipulator Slit 4vu

SUL Baugruppe 14.
Manipulator Slit.

SUL Assembly 14.
Manipulator Slit.

SUL Baugruppe14 - Manipulator Slit 4vu

SUL Baugruppe 14.
Manipulator Slit.

SUL Assembly 14.
Manipulator Slit.

SUL Blendensystem 01

SUL Blendensystem 01.

SUL Aperture 01.

SUL Photon Shutter

SUL Photon Shutter

SUL Photon Shutter

SUL Photon Shutter.

SUL Profilmonitor

SUL Profilmonitor

SUL Profilmonitor

SINS Beamline

SSLS SINS Monochromator

Monochromator

SINS Frontendinstallation

Frontend installation.

SINS Frontendinstallation

Frontend installation.

SINS Frontendinstallation

Frontend installation.
Bakeout process.

SINS Frontend

Frontend installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Beamlineinstallation

Beamline installation.

SINS Polarizer Slit

Polarizer Slit

IR Beamline for Bessy II

IR Beamline

BESSY II Synchrotron Light Source
Infrared – Beamline
during assembly



Beschreibungen

IR Beamline B22

Read More... | Pictures... | Downloads...


Technische Beschreibung


Beamline B22 will be a InfraRed MicroSpectroscopy facility to perform diffraction limited microscopy and molecular sensitive imaging on both biological systems and inorganic materials.
Fourier Transform IR interferometers coupled to IR microscopes on two experimental end stations will span the whole IR range from the near to the far–IR.

Technische Daten


Radiation IR photon beam, maintaining synchrotron radiation brightness in the whole spectral range from 10000 cm-1 (λ=1 λm) to 20 cm-1 (λ=500 λm).
Bending and edge radiation IR sources.

Overview Visible to far-IR components of the SR will be mirror reflected with high efficiency on metallic surfaces, and refocused twice by ellipsoidal mirrors to go through, respectively, the survey port and the final IR transparent windows.
Mirrors M1 and M2 are sited in the front end area within the Diamond storage ring to, respectively, deflect upward and focus the SR beam through the storage ring shield wall aperture(survey port).
Mirrors M3, M4a plus M4b are located in cabins outside the storage ring to deflect downward and refocus the beam to the line ends (diamond windows).

Optics The first optical element in the beamline is a plane, gold coated, aluminium alloy mirror, M1.
This is placed 5.00 m from the bending magnet source and at 45° with respect to the incident beam that deflects vertically the IR and visible SR to a second mirror M2.
M1 is un-cooled to prevent any vibration issues, so excessive heat-load is avoided by a horizontal slot in the centre to reject the X-ray component confined in the central part of the synchrotron beam (~ 2 mrad vertically centred on the SR emission plane).
The second optical element of the front-end is an ellipsoidal gold coated mirror M2 at an angle of 45° with respect to the vertical beam leaving M1, that focuses the SR light
through the survey port in the shield wall.
M2 will be located 0.77 m above M1 and at 2.17 m elevation from the floor (for a final distance from the 1st focal spot of 13.00 m).
The third optical element, outside the shield wall, is an ellipsoidal gold coated mirror M3 at an angle of 45° with respect to the beam leaving M2, that focuses SR light downward. The mirror will be located 26.00 m downstream of M2, and is to be at the same height.
M3 refocuses the image from the 1st focus (13.00 m upstream of M3) to the end of the beamline (2.77 m downstream of M3 and 80 mm after the diamond windows), via mirrors M4.
The final optical elements are the two plane, gold coated, aluminium mirrors M4a and M4b. M4a will be at 45° with respect to the vertical beam from M3 and will pass the beam towards one diamond window.
M4b will be at -45° with respect to the vertical beam leaving M3 and will pass the beam towards the opposite diamond window.
M4a and M4b will be located 1.15 m below M3 (1.02 m above floor level), they will be fixed at 90° one to the other and each large enough to take the entire IR fan.
The pair of mirrors are to be moved in and out of the beam leaving M3 to select which fraction of the IR fan is be passed to each end station. 
Beam Options will be: all radiation to end station 1, all radiation to end-station 2 or a fraction of the SR (edge and bending fans) to each end station simultaneously.

Kunde & Zeitraum


Kunde:

Diamond Light Source
Realisierungszeitraum:

Juni 2008 bis Juni 2009

 

Infrarot Beamline für ASP

Read More... | Pictures... | Downloads...


Technische Beschreibung


The IR beamline will be used for IR spectromicroscopy and high resolution IR spectroscopy. The IR Beamline at the Australian Synchrotron aims to deliver world class performance in terms of a bright and highly stable photon beam covering a wavelength range of from 0.4 to 100 µm. It is intended to be able to perform visible, near, and mid IR (0.4 to 15 µm) with the microscope, and mid to far IR (100 µm) with the spectrometer. The complete beamline consists of the IR extraction system, which links to a beamsplitting unit, which separates the incident beam into two parts, one predominantly edge radiation, and the other predominantly bending magnet radiation. Each beamline is directed to matching optics boxes which are sited immediately before the instruments in the optical path and match the incoming photon beam to the entrance apertures of the instrument.

Technische Daten


Type of radiation Using edge radiation and bending magnet radiation

Details -Infrared extraction system
-CVD Diamond window
-Periscope
-Optic matching boxes for both spectrometers

Beam splitting system Separation into two parts for edge radiation and bending magnet radiation

Mirror numbers edge radiation line: 11
bending magnet radiation line: 12

Kunde & Zeitraum


Kunde:

Australian Synchtrotron Project, Melbourne, Australia
Realisierungszeitraum:

März 2006 bis März 2007

 

ISMI Beamline

Read More... | Pictures... | Downloads...



Technische Beschreibung


Infrarot Spektroskopie und Mikroskopie (ISMI) Beamline.

Technische Daten


Strahlungsquelle: Dipol

Wellenlängenbereich NIR to FIR (1µm .. 10mm or 104cm-1 .. 1 cm-1)

Vakuum–Bereich: UHV bis zum Diamantfenster
HV/MV nach dem Diamantfenster bis zum Eingang des Spectrometers

Spiegel: Mirror 1: wassergekühlter Planspiegel aus GLIDCOP mit Ni/Au–Beschichtung
Mirror 2 und 3: Toroid aus Glas mit Au–Beschichtung
Mirror 4: Planspiegel aus Glas mit Au–Beschichtung
Mirror 5: Planspiegel aus Glas mit Au–Beschichtung (Umschaltspiegel)
Mirror 6: Ellipsoid aus Glas mit Au–Beschichtung
Mirror 7: Planspiegel aus Glas mit Goldbeschichtung
Strahldiagnostik: 2 CCD–Kameras auf M1 und M2 gerichtet

Diamantfenster: CVD–Diamant Druckfenster, lichter Durchmesser 30mm, 1° keilförmig in Schwenk–& Kipphalter montiert

Spektrometer: Bruker IFS 66V/S

Kunde & Zeitraum


Kunde:

Singapore Synchrotron Light Source (SSLS)
Realisierungszeitraum:

August 2004 bis März 2005

 

U55 Beamline an DELTA (Dortmund)

Read More... | Pictures... | Downloads...


Technische Beschreibung


Festkörper– und Oberflächenanalytik

Technische Daten


Strahlungsquelle: Undulator U55

Energiebereich: 50 ... 1600 eV

Photonenfluß vor Spiegel 1: rd. 5x1016 Ph / s mm2

Minimale Fokusgröße: 80mm-3 x 10mm-3

Auflösung des Monochromators: high photon flux mode >= 2.000
high resolution mode >= 10.000

Heat load: ca. 50 W (vor Spiegel 1)

Monochromator: Plangitter / Planspiegel - Monochromator für drei Gitter (Jenoptik)

Austrittsspalt: Festkörpergelenk

Spiegel: Kollimierspiegel (toroidal)
Fokussierspiege (zylindrisch)
Refokussierspiegel (toroidal)

Strahldiagnostik: Strahllage-Monitore
Intensitäts-Monitor
Fluoreszenz-Schirme
Ionisationsmonitor

Kunde & Zeitraum


Kunde:

Universität Dortmund – Fachbereich Physik
Realisierungszeitraum:

Januar 2002 bis März 2003

 

SUL Beamline

Read More... | Pictures... | Downloads...


Technische Beschreibung


Strahlrohr für Röntgenstrahlung
Absorptions-, Fluoreszenz-, Diffraktions-, SAXS-Experimente

Technische Daten


Strahlungsquelle: Wiggler, Undulator

Energiebereich: 1.4 ... 21 keV

Photonenfluß an Probe: ca. 1019 Ph / s mm2

Auflösung an Probe: > 3300

Strahlleistung: ca. 2 kW (vor Spiegel 1)

Monochromator: bicrystal monochromator (KOHZU)

Spiegel: 2 fokussierende Spiegel mit Bending–Systemen (IRELEC)
Refokussierspiegel (IRELEC)

Strahldiagnostik: Strahllage–Monitore,
Intensitäts–Monitor,
Fluoreszenz–Monitore,
Polarisations–Monitor,
Strahlprofil–Monitore


Kunde & Zeitraum


Kunde:

Karlsruhe Angstrom Source (ANKA)
Synchrotron–Umweltlabor (SUL)

Realisierungszeitraum:

Januar 2001 bis Dezember 2002

 

SINS Beamline

Read More... | Pictures... | Downloads...


Technische Beschreibung


Beamline für Oberflächen– und Nanostruktur– Untersuchungen (SINS)

Photoemissions-Spektroskopie (PES)
Photoemissions-Elektronenmikroskopie (PEEM)
Photodesorptions-Spektroskopie mit RöntgenAnregung (XPD)
Röntgen-Spektroskopie (SXMCD)
Absorptions-Spektroskopie (NEXAFS, XANES)

Technische Daten


Strahlungsquelle: Dipol

Energiebereich: 50 ... 1400 eV

Photonenfluß an Probe: ca. 1011 Ph / s / 100 mA

Auflösung an Probe: > 5000

Strahlleistung: ca. 2 kW (vor Spiegel 1)

Monochromator: Dragon–Monochromator (FMB) 4 wechselbare Si–Gitter

Spiegel: 2 fokussierende Spiegel mit Bending–Systemen (IRELEC)
Refokussierspiegel (IRELEC)

Strahldiagnostik: Strahllage–Monitore,
Intensitäts–Monitor,
Fluoreszenz–Monitore,
Polarisations–Monitor,
Strahlprofil–Monitore


Kunde & Zeitraum


Kunde:

Singapore Synchrotron Light Source (SSLS)

Realisierungszeitraum:

April 2001 bis Juli 2002

 

IR Beamline für Bessy II

Read More... | Pictures... | Downloads...


Technische Beschreibung


IR Beamline für Bessy II

Kunde & Zeitraum


Kunde:

Bessy II
Realisierungszeitraum: